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Abstract

In uniform soils that are susceptible to unstable preferential flow, the water saturation exhibits a nonmonotonic profile upon

continuous infiltration. This overshoot cannot be described by the conventional Richards equation. Here, solutions to the infiltra-

tions using a popular nonequilibrium extension to the Richards equation are obtained using the traveling wave nature of the sat-

uration profile. Quantitative comparisons are made to recent measurements of saturation overshoot. The nonequilibrium solutions

can be made to fit the flux range of the overshoot, but the fit to the tip saturations is fair to poor at best. Also, small changes in

porous media size and roughness require large changes in the magnitude of the nonequilibrium term to match the flux range.

The results suggest that the nonequilibrium capillary pressure does not include the correct physics that controls the overshoot.

Published by Elsevier Ltd.
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1. Introduction

It has been shown that constant flux infiltrations into

sandy porous media can produce a water saturation and
water pressure profile in which the saturation (and pres-

sure) overshoots at the initial wetting front before

settling down to its asymptotic value [23,9,3]. This satu-

ration overshoot at the wetting front has been hypothe-

sized to be the cause of gravity driven fingering [9,6,5].

As pointed out by Jean-Yves Parlange [16], the parame-

ters that control fingering are the saturation and pres-

sure behind the wetting front, as these are necessary
inputs to most if not all models which predict infiltration

stability and finger widths [2,18,10,25].

Recently, it has been shown that overshoot simply

cannot be described by the Richards equation [6,5],

the primary unsaturated flow equation. The Richards
0309-1708/$ - see front matter Published by Elsevier Ltd.

doi:10.1016/j.advwatres.2004.12.003

* Fax: +1 662 232 2915.

E-mail address: ddicarlo@ars.usda.gov
equation, which gives the time change of water content

in a porous medium, is simply a combination of conser-

vation of mass, the Darcy–Buckingham unsaturated flux

equation, and the soil characteristic pressure–saturation
curve [14,4]. Implicit in the Richards equation is the fact

that one can define a length scale where properties such

as porosity, conductivity, and saturation can be consid-

ered continuous [1]. Although widely successful for

modeling almost all observed water flows, it has been ar-

gued that additional continuum terms are necessary, in

particular for when the local saturation changes quickly

[11,7,12].
The observed overshoot would seem to give credence

to the necessity of adding additional continuum terms to

the Richards equation to reproduce the observed phe-

nomena [7,8]. Eliassi and Glass [7] considered three pos-

sible additional terms and from numerical simulations

using one of them [8] produced saturation patterns

which qualitatively matched up with those seen in grav-

ity driven fingers.
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Clearly quantitative comparisons are needed between

the possible continuum additions and measurements of

saturation overshoot. Recently, saturation overshoot

has been measured in detail as a function of grain size,

grain angularity, applied flux, and initial water satura-

tion [3]. These detailed measurements provide a bench-
mark for studying additional terms of continuum

models, and their efficacy for reproducing saturation

overshoot.

In this paper, we use the traveling wave property of

the infiltrating water content in space to convert the

Richards equation plus any additional continuum terms

to an ordinary differential equation. Solutions of this

ODE are found for the additional nonequilibrium capil-
lary pressure term [13,12] which has been one of the

most popular additions to continuum theory. These

solutions are then fir to the previously measured over-

shoot [3]. The infiltrating flux range over which over-

shoot occurs can be matched with this additional term,

but the fit to the tip saturations is poor and the magni-

tude of the term must be varied greatly from sand to

sand.
2. Theory and model

Saturation overshoot is modeled in a 1-D space with

the only direction being z the vertical direction. Assum-

ing the only forces acting on the water are gravitational

and capillary, with z positive downward the Darcy–
Buckingham flux is

q ¼ �KðhÞ ohw
oz

; ð1Þ

where K(h) is the unsaturated conductivity which de-

pends on the volumetric water saturation h and

hw ¼ Pw � z ð2Þ

is the total head in units of cm of water, and consists of

the pressure term (Pw) and the gravitational term. From

this and conservation of mass, the Richards equation is

obtained [14],

oh
ot

¼ o

oz
KðhÞ oPw

oz
� 1

� �� �
: ð3Þ

Let this be our starting point. It is useful to define the
diffusivity as

DðhÞ ¼ KðhÞ oPw

oh

� �
: ð4Þ

Note this assumes a one to one dependence of the cap-

illary pressure of the water on the saturation. This is

known to have hysteresis on imbibition and drainage,

and an additional nonequilibrium component will be

added shortly.
Thus the Richards equation can be written only in

terms of h,

oh
ot

¼ o

oz
DðhÞ oh

oz

� �� �
� o

oz
KðhÞ: ð5Þ

Infiltration experiments have shown that the saturation

profile can be described as a traveling wave [21], once far

enough away from the soil surface. Thus h(z, t) can be

written as h(z � mt) which will give a solution propagat-
ing downward at a velocity of m. Following Philip [19]

and Parlange [17], a new variable g = �(z � mt) can be

introduced, the partial differentials become simple deriv-

atives, and the PDE collapses to an ODE

m
dh
dg

¼ d

dg
DðhÞ dh

dg

� �� �
þ d

dg
KðhÞ: ð6Þ

Using the boundary conditions of

z ¼ þ1; g ¼ �1; h ¼ h0;
dh
dg

¼ 0; ð7Þ

at the bottom of the column, and

z ¼ �1; g ¼ þ1; h ¼ h1;
dh
dg

¼ 0; ð8Þ

at the top of the column, gives the solution of

mðh� h0Þ ¼ DðhÞ dh
dg

þ ðKðhÞ � Kðh0ÞÞ; ð9Þ

with the wave velocity given by

m ¼ Kðh1Þ � Kðh0Þ
ðh1 � h0Þ

: ð10Þ

Eq. (9) can be solved by a simple integration. This

solution is known not to give overshoot as long as the

unsaturated conductivity is positive and increasing fas-

ter than linearly with saturation, and that the diffusivity

is positive. Hysteresis does not play a role as the satura-

tion is always increasing (no overshoot) and the soil re-

mains on the wetting curve.

This same traveling wave solution is easily adaptable
to include a dynamic nonequilibrium capillary term as

suggested by Hassanizadeh and Gray [13,12,5]. They

postulate that the dynamic (actual) pressure is related

to the static capillary pressure through

Pw ¼ PwðhÞ þ sðhÞ oh
ot

; ð11Þ

where Pw(h) is the static capillary pressure–saturation

curve (either imbibition, drainage, or scanning, in this

case it will be imbibition). The coefficient s(h) gives the
magnitude of the dynamic effects, and it has the SI units

of kg/ms. It is typically chosen to be a constant with sat-
uration, but it has been suggested that it may also vary

with saturation [12], so the dependence is kept explicit

for now. Of course, s = 0 returns the static capillary

pressure, and conventional Richards equation.



Table 1

Physical parameters for the three sands used in the experimental

study [3]

Sand d50 (mm) Shape K (cm/min) / a (cm�1) n

12/20 1.105 Spherical 30 0.35 0.303 4.98

20/30 0.713 Spherical 15 0.35 0.177 6.23

Grey 0.96 Angular 32 0.40 0.330 4.14

The soil characteristic parameters where taken on imbibition. For each

sand the residual water content was assumed to be Sr = 0 (appropriate

for imbibition), and in the Mualem unsaturated conductivity param-

eter (l) was taken as 1.
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Substituting this pressure term into Eq. (3) gives

oh
ot

¼ o

oz
DðhÞ oh

oz

� �� �
� o

oz
KðhÞ þ o

oz
KðhÞ o

oz
sðhÞoh

ot

� �� �
;

ð12Þ

where the diffusivity is from the static curves. Using the
same traveling wave solution results in

m
dh
dg

¼ d

dg
DðhÞ dh

dg

� �� �
þ d

dg
KðhÞ

þ m
d

dg
KðhÞ d

dg
sðhÞ dh

dg

� �� �
: ð13Þ

Again integrating with the same boundary conditions,

and rearranging gives a 2nd order ODE for the satura-
tion in terms of g,

mKðhÞ d

dg
sðhÞ dh

dg

� �
þ DðhÞ dh

dg
þ KðhÞ � Kðh0Þ

� mðh� h0Þ ¼ 0; ð14Þ

with the velocity given as before (Eq. (10)). This can be

solved numerically by integrating h from the bottom

boundary condition. As will be seen this equation can

produce overshoot for certain values of s and m.
Eliassi and Glass [7] propose other possible exten-

sions which can be added to right hand side of the Rich-

ards equation, that they call a hypodiffusive and

hyperdiffusive terms respectively,

Rhypo ¼
o

oz
F ðhÞ o

oz
h

� �
; ð15Þ

Rhyper ¼ � o

ot
T ðhÞ o

ot
h

� �
; ð16Þ

where F(h) and T(h) are postulated to be unknown func-

tions of saturation. These can be incorporated using the

same traveling wave solution and in either case, one ar-

rives at a first order ODE exactly as given by Eq. (9),

with a new effective diffusivity D* given by

D�
hypoðhÞ ¼ DðhÞ þ F ðhÞ; ð17Þ

D�
hyperðhÞ ¼ DðhÞ � m2T ðhÞ; ð18Þ

for the hypodiffusive and for the hyperdiffusive term

respectively. In these cases overshoot is created when

there is a saturation region where the effective diffusivity
is negative (through a negative F(h) or a positive T(h)).
This forces the saturation to have a discontinuity over

this saturation region, as seen in the numerical solutions

of Eliassi and Glass [8]. The exact taking off and landing

points of the discontinuity have yet to be determined,

but in either case it cannot be solved by a continuous

integration as can be for the nonequilibrium term.

Therefore the solution to the 2nd order ODE with the
nonequilibrium capillary pressure is focused on.
The integration is performed using the ODE solvers

in MATLAB (Mathworks). The soil characteristic

curves used were from the same three sands from which

the overshoot was measured [3]. The van Genuchten [24]

formulation for the soil characteristic curves was used,

and the parameters for the sands are listed in Table 1.

The coefficient of the dynamic term s was chosen to

be independent of saturation (constant s), and was ad-
justed so the solution to Eq. (14) provides the best look-

ing fits to the previously measured overshoot [3]. In

particular, attention was placed on making the flux

range for which saturation overshoot appears from

Eq. (14) match that seen in recent experiments. Solu-

tions were obtained using nonhysteretic and hysteretic

soil characteristic curves. Either set of characteristic

curves produced the same magnitude of saturation over-
shoot, as the magnitude of the overshoot is determined

entirely on the imbibition branch of the soil characteris-

tic curve. Saturation dependent s of varying functional

forms were also attempted to fit the data, and are dis-

cussed in the results.
3. Results

Fig. 1 shows self similar infiltration solutions to Rich-

ards equation with the additional nonequilibrium term.

For this solution, 20/30 sand parameters were used for

the soil characteristic curves, the s parameter was chosen

to be a constant of 4 · 105 kg/ms and the initial water

content was set to 0.002 [27]. The additional term clearly

does produce large overshoot at moderate fluxes, and
minimal or no overshoot at very low fluxes. This is sim-

ilar to that seen in previous experiments for fingering

[26] and one-dimensional displacements [3]. A larger s
produces a greater flux range over which overshoot oc-

curs, and a smaller s produces a smaller flux range of

overshoot. The parameter s can then be adjusted to

achieve the same range of fluxes over which overshoot

takes place in the experiments.
Fig. 2 shows the tip and tail saturations previously

measured for the initially dry 20/30 sand [3], with the

best fit using a constant s (solid line). The solutions

using a constant s match the overshoot range well, but
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Fig. 1. Calculated traveling wave saturation profiles for imbibition

using the Richards equation plus the nonequilibrium pressure. At low

infiltrating fluxes, little or no overshoot is seen, but at moderate and

higher fluxes, the saturation exhibits overshoot.
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Fig. 2. Calculated tip saturations (solid line) versus flux using s =
4 · 105 kg/ms compared to experimental measurements of the tip and

tail saturations for dry 20/30 sand [3]. The value of s was chosen to

match the flux range of the observed overshoot.
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Fig. 3. Calculated tip saturations (solid line) versus flux using the best

fit s = 4 · 106 kg/ms compared to experimental measurements of the

tip and tail saturations for dry 12/20 sand [3]. The fit is poorer than

that seen for the 20/30 sand and the best s is an order of magnitude

greater than that for the 20/30 sand (shown in dashed line).
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the tip saturation match is fair, with the saturation in the

tip going quickly to fully saturated, once overshoot oc-

curs. In contrast, the experimental data shows logarith-

mically increasing tip saturation with increasing flux.
Fig. 3 shows the tip and tail saturations previously

measured for the initially dry 12/20 sand [3], with the

best fit for a constant s (solid line). The overshoot range

can again be fit well, but the tip saturation using a con-

stant s is poor, even with the large scatter in the exper-

imental data. In addition, the magnitude of s needed to

achieve these fits is a factor of 10 greater than that seen
in the 20/30 sand. The dashed line shows the tip satura-

tions using the s obtained from the 20/30 sand and the

12/20 soil characteristics. Clearly the same s does not

seem to work well from sand to sand, even with the only

change in sand being the grain size. Note that the s from
the 20/30 sand produces roughly the same range and
magnitude of overshoot as seen in the 20/30 sand (see

Fig. 2) despite the difference in soil parameters from

20/30 to 12/20 sand.

Fig. 4 shows the tip and tail saturations previously

measured for the initially dry grey sand [3], with the best

fit for a constant s (solid line). Here the fit is quite poor

even with lowering s by an order of magnitude from the

20/30 sand and two orders of magnitude from the 12/20
sand. Again, the s obtained from the 20/30 sand (dashed

line) does not work for this slightly larger more angular

sand.

In addition to a constant s, different saturation

dependent s�s were also attempted to fit the observed

overshoot. Three different functional forms were at-

tempted: (a) a s that increases with water content s =
s0S

b (where S = h// is the saturation); (b) a s that de-
creases with water content s = s0(1 � S)b, and a s that

is large near saturation and low water content and is

smallest in the mid-range with s = s0j0.5 � Sjb. In each

case the parameters s0 and b were adjusted to produce

the best fit to the overshoot range. Fig. 5 shows the re-

sults of these fits. It was found that the exponent b did

not change the quality of the fits drastically, so b was

held constant at 1 for simplicity and to limit the fitting
parameters. Clearly, cases (b) and (c) provided fits that

were roughly equal to the constant s case, and thus pro-
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Fig. 6. Calculated overshoot tip saturations (solid line) versus flux

for 20/30 sand with an initial water content of 0.01 compared to

experimentally measured tip and tail saturations [3]. The value of s
used was obtained from the dry 20/30 sand, and does not provide a

good fit to initially wet sand.
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Fig. 4. Calculated tip saturations (solid line) versus flux using the best

fit s = 4 · 104 kg/ms compared to experimental measurements of the

tip and tail saturations for dry 12/20 sand [3]. Even the best fit is poor,

and the best s is an order of magnitude less than that for the 20/30 sand

(shown in dashed line), and two orders of magnitude less than that

from the similarly sized 12/20 sand.
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vide no benefit. The best fit was found using a s that in-
creased linearly with saturation (case (a)), where the fit

to the tip water content was better than the constant s
case. Unfortunately, this came at a high cost, as the

overall profiles (water content versus z, as in Fig. 1) ob-

tained at intermediate fluxes (between 0.01 and 0.1 cm/

min) were unphysical in the sense that the predicted dis-

tance from dry soil to the tip was on the order of 10 cm,
much longer than the sub-centimeter fringe seen in the
experiments. Thus it appears that simple saturation

dependent s�s do not improve the quality of the fit to

the data.

In addition, comparisons can also be made between
the theory and experiment when the soil is not dry but

has an initial water content. Fig. 6 shows the predicted

overshoot as a function of flux (using s from the dry

20/30 sand) and the experimental observations for the

20/30 sand with initial water content of 0.01 [3]. The

match is very poor, but this is not strong evidence

against the validity of the approach as the soil imbibi-

tion curves are likely to be significantly different when
there is an initial water content, and these curves are

currently unmeasured.
4. Discussion

It is seen that saturation overshoot can be produced

using a dynamic nonequilibrium pressure as advocated

by Hassanizadeh and Gray [13,12] among others. Using

a constant s term as suggested as a first cut [12] the flux

range for which saturation overshoot occurs can be

matched well, using values of s consistent with those
found previously [12]. While the overshoot range can

be fit to match decently with the data, the constant s
term consistently predicts a large flux region where the

tips are saturated fully. This is not seen experimentally

for any of the sands measured previously. Using a satu-

ration dependent s is not seen to improve the match to

the experimental data.

More importantly, the magnitude of s needs to be
adjusted orders of magnitude to fit the data for each
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different sand. In particular, the 12/20 sand grains are

only about 50% bigger than the 20/30 sand grains (and

similar in shape [20]), but require a s of a factor of 10

greater to get the flux range correct. Hassanizadeh et

al. [12] suggested that s may vary with grain size. They

cite Stauffer [22] who suggested the following empirical
dependence of s on soil properties

s / /l
Kk

peð Þ2; ð19Þ

where l is the viscosity, pe is the Brooks–Corey entry

pressure in units of head (inversely proportional to the
a of the van Genuchten parameters (Table 1)), and k
is the Brooks–Corey shape factor (related to n in the

van Genuchten parameters). Hassanizadeh et al. [12]

point out that this predicts a larger s for finer grained

media, and they find this qualitatively true for imbibi-

tion but not drainage. In any case, using the 20/30 and

12/20 soil parameters in Table 1, this predicts a s smaller

by a factor of 5 for the 12/20 than the 20/30, while the
fits suggest a s greater by a factor of 10, exactly the

opposite.

For the grey sand, a s smaller by a factor of 10 is re-

quired when compared to the 20/30 sand. This is in the

correct direction predicted by Eq. (19), although the

sands are not Miller [15] similar (the grey sand has angu-

lar grains, and the 20/30 has smooth grains). Most

importantly, the 12/20 and the grey sands have very
similar imbibition and drainage characteristics (the tra-

ditional constitutive relationships [3]), but require non-

equilibrium terms a factor of 100 different than each

other to model the results. It is not surprising that sands

with different physical shapes (all other quantities being

equal) would have different nonequilibrium terms, but

the magnitude of this difference is huge.

Naturally, one would ideally prefer to add a small
term to the continuum Richards equation to model

the observed saturation overshoot seen on infiltration.

These results question the efficacy of such a method,

mainly due to the fact that the needed extra term has

parameters which vary greatly from soil to soil, and

needs to be fit to the results to be effective. If the magni-

tude of the nonequilibrium term can be found using

some other measurement, and this compared to the infil-
tration experiments, then the procedure would have

more validity and usability.

There are strong conceptual arguments that in cases

of saturation overshoot and gravity driven fingering that

the front is so sharp at the pore scale that a continuum

modeling approach is fraught with difficulties due to the

fact that a continuum scale cannot be well defined for

fronts sharp at the pore scale [1]. For the solutions pre-
sented here, the length scale over which the saturation

changes at the front is roughly 2 cm (see Fig. 1), which

is well into the continuum region. Thus this continuum

model is at least self consistent for these infiltrations,
although the match to the experimental observed profile

(which have sharp fronts with saturation changes taking

place at the sub-centimeter scale) is poor.

In summary, it is straightforward to add additional

continuum terms to the Richards equation, and to ob-

tain traveling wave solutions like those observed for
constant flux infiltrations. Although many of the exper-

imental observations can be matched (overshoot is ob-

served, nonequilibrium parameters needed are of

roughly the correct order of magnitude), others cannot

(tip saturations are too high, saturation profiles are

not as abrupt as observed), and matches that can be

made require large adjustments of the nonequilibrium

term for small soil changes. This makes the nonequilib-
rium addition unlikely to provide any predictive

capabilities.
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